Preliminary communication

Phenylpentalenediiron pentacarbonyl

DONALD F. HUNT and JOHN W. RUSSELL

Chemistry Department, University of Virginia, Charlottesville, Virginia 22901 (U.S.A.) (Received August 18th, 1972)

In recent years a number of examples have been reported in which coordination to an iron carbonyl moiety markedly enhances the stability of highly reactive organic molecules. Cyclobutadiene¹, heptafulvene², norbornadien-7-one³, trimethylenemethane⁴, and *cis*-cyclononatetraene⁵, for example, have all been isolated and characterized in the form of iron tricarbonyl complexes.

Pentalene (I), the lower homolog of naphthalene, is another example of a theoretically interesting hydrocarbon which is incapable of existing in the free state at ambient temperatures but might form a stable iron carbonyl complex^{*}. To test this hypothesis, we have recently examined a number of reactions between derivatives of dihydropentalene and various iron carbonyls. In this report we describe the preparation and physical properties of (*octahapto*-1-phenylpentalene)- μ -carbonyltetracarbonyldiiron (Fe-Fe) (II), a stable transition metal π -complex of phenylpentalene.

> (I) $(CO)_{2}Fe - Fe(CO)_{2} \qquad (CO)_{2}Fe - Fe(CO)_{2} \qquad R$ (I) (IIa) (IIb) $(IIa) R = (CH_{3})_{2}N$ (IIb) R = Ph

* Hexaphenyl⁶ and bis(1,3-dimethylaminopentalene)⁷ have been synthesized and found to be relatively stable, and evidence supporting the existence of 1-methylpentalene at -196° has recently been obtained⁸. Organometallic complexes of pentalenes, bis(pentalenylnickel)⁹, diallylpentalenedinickel¹⁰, tetraallylpentalenedichromium¹⁰, hexaallylpentalenedizirconium¹⁰, pentalenyl-1,5-cyclooctadienerhodium anion¹¹, and the dipentalenyliron anion ¹² have been prepared recently. An approach to the synthesis of the benzopentalenyliryclopentadienyliron cation has also been reported¹³.

J. Organometal. Chem., 46 (1972)

Treatment of 3-dimethylamino-1,2-dihydropentalene (IIIa) with phenyllithium according to the procedure of Kaiser and Hafner¹⁴ afforded 3-phenyl-1,2-dihydropentalene (IIIb) in 62% yield as a maroon solid. A 100 MHz NMR spectrum (acetone- d_6) of purified IIIb (sublimation at 75°/0.1 mm) displayed the following signals (τ): 2.22, 2.64 (5,m) C₆H₅; 3.22 (1,m) H₅; 3.60 (1,d, J = 5 Hz) H₆; 4.20 (1,m) H₄; 6.60, 7.30 (4,m) CH₂ CH₂. Assignments were confirmed by double-resonance experiments.

Preparation of II was accomplished by heating a magnetically stirred solution of 3-phenyl-1,2-dihydropentalene (900 mg, 5 mmole) and iron pentacarbonyl (12 ml, 89 mmole) in 60 ml of deoxygenated methylcyclohexane at 110° for 12 h under nitrogen. The reaction mixture was then cooled, filtered through Celite, and concentrated under reduced pressure (20 mm). Preparative TLC of the residue on neutral Silica Gel using 5/1 benzene-acetone as the eluent afforded 260 mg (12%) of II as a dark green solid; m.p. 133-135° (N₂.) (Found: C, 53.10; H, 2.33; Fe, 25.89. $C_{19}H_{10}O_5Fe_2$ calcd.: C, 53.08; H, 2.35; Fe, 25.98%.)

The mass spectrum (70 eV) of II shows a molecular ion at m/e 430 (16) and abundant fragment ions corresponding to the successive loss of five carbon monoxide ligands and two iron atoms at m/e 402 (25), 374 (18), 346 (25), 318 (65), 290 (83), 234 (88), and 178 (100). The fragment ion at m/e 178 (C₁₄H₁₀) suggested the presence of a phenylpentalene ligand in the complex and provided the first indication that the starting material, 3-phenyl-1,2-dihydropentalene (IIIb), had been oxidized under the reaction conditions. The molecular weight of II was confirmed by a CI(CH₄) mass spectrum¹⁵ of II which shows an abundant M+1 ion at m/e 431.

The presence of a bridging carbonyl in II is indicated by the IR spectrum (CCl₄) which shows a strong absorption at 1785 ± 5 cm⁻¹. Bands due to the terminal carbonyls in II occur at 1975, 2010, and 2040 ± 5 cm⁻¹.

The 100 MHz NMR spectrum of II contains signals at (τ) 2.62 (5,m) C₆H₅; 3.90 (1,d, $J_{2,3} = 3$ Hz) H₂; 4.40 (1,t, $J_{4,5} = J_{5,6} = 3$ Hz) H₅; 5.34 (1,d) H₄; 5.70 (2.m) H₃ and H₆. Assignments were confirmed by double-resonance experiments.

Although the above spectral data define the gross structural features of the phenylpentalene complex, differentiation of structures IIa and IIb must await X-ray analysis. Cyclooctatetraenediiron pentacarbonyl, which also contains a cyclic 8π -electron ligand, has recently been shown to have a structure similar to IIb ¹⁶.

Experiments designed to liberate the phenylpentalene ligand from the iron carbonyl complex and also to explore the chemistry of the coordinated pentalene ring system are planned in the near future.

ACKNOWLEDGEMENT

Acknowledgement is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

REFERENCES

- 1 G.F. Emerson, L. Watts and R. Pettit, J. Amer. Chem. Soc., 87 (1965) 131.
- 2 (a) G.T. Rodeheaver, G.C. Farrant and D.F. Hunt, J. Organometal Chem., 30 (1971) 131;
- (b) D.J. Ehntholt and R.C.Kerber, Chem. Commun., (1970) 1451.
 3 J.M. Landesberg and J. Sieczkowski, J. Amer. Chem. Soc., 90 (1968) 1655.
- S J.M. Landesweig and S. Sietzkowski, J. Amer. Chem. Dot, 50 (1900) 1055.
- 4 G.F. Emerson, K. Ehrlich, W.P. Giering and P.C. Lauterbur, J. Amer. Chem. Soc., 88 (1966) 3172.
- 5 E.J. Reardon, Jr. and M. Brookhart, J. Amer. Chem. Soc., in press.
- 6 E.L. Goff, J. Amer. Chem. Soc., 84 (1962) 3975.
- 7 K. Hafner, K.F. Bangert and V. Organos, Angew. Chem. Int. Ed. Engl., 6 (1967) 451.
- 8 R. Bloch, R.A. Marty and P. de Mayo, J. Amer. Chem. Soc., 93 (1971) 3071.
- 9 T.J. Katz and N. Acton, J. Amer. Chem. Soc., 94 (1972) 3281.
- 10 A. Miyake and A. Kanai, Angew. Chem. Int. Ed. Engl., 10 (1971) 801.
- 11 T.J. Katz and J.J. Mrowca, J. Amer. Chem. Soc., 89 (1967) 1105.
- 12 T.J. Katz and M. Rosenberger, J. Amer. Chem. Soc., 85 (1963) 2030.
- 13 M. Cais, A. Modiano and A. Rauch, J. Amer. Chem. Soc., 87 (1965) 5607.
- 14 R. Kaiser and K. Hafner, Angew. Chem. Int. Ed. Engl., 9 (1970) 892.
- 15 (a) F.H. Field, Accounts Chem. Res., 1 (1968) 42; (b) M.S.B. Munson, Anal. Chem., 43 (1971) 28A.
- 16 E.B. Fleischer, A.L. Stone, R.B.K. Dewar, J.D. Wright, C.E. Keller and R. Pettit, J. Amer. Chem. Soc., 88 (1966) 3158.

J. Organometal. Chem., 46 (1972)